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Antifungal peptides: Origin, activity,
and therapeutic potential
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Antifungal peptides have been identified in a wide range of life forms which inclu-
de plants, mammals, and microorganisms. Their structures are as varied as their
antifungal properties. Semisynthetic and fully synthetic analogs have been deve-
loped from a few of these natural peptides that are superior to the parent com-
pound. A few of these peptides hold promise in combating fungal infections and
have entered clinical trials. 

Antifungal, Peptides, Mycoses

Péptidos antifúngicos: origen, actividad y potencial
terapéutico

Se han identificado péptidos antifúngicos en una amplia gama de seres vivos,
incluyendo plantas, mamíferos y microorganismos, cuya estructutura es tan
variada como sus propiedades antifúngicas. A partir de algunos de éstos pépti-
dos naturales, se han desarrollado análogos sintéticos o semisintéticos cuya
actividad es superior a la del compuesto original. Unos pocos de éstos péptidos
parecen prometedores en la lucha contra las micosis y se han iniciado con ellos
ensayos clínicos.
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Palabras clave

The antifungal properties of peptides have been
studied for nearly forty years. During the past 10-15 years,
interest in their antifungal nature has expanded due to
increased resistance of fungal pathogens to currently-
employed antifungal drugs and the toxicity or adverse
host reactions of other antiinfectives [1]. Approximately
100 peptides have been investigated to date for their anti-
fungal properties. They vary widely in source with the
most studied being natural though an increasing number
are semisynthetic or totally synthetic. They are linear or
cyclic structures with hydrophobic or amphipathic proper-
ties. Activity may be by lysis [2], by binding to, and dis-
ruption of, the outer membrane. Others penetrate the
membrane and interact with specific internal targets [3,4]
or cause pore formation resulting in leakage of important
intracellular contents [5]. This review will briefly discuss
peptides with moderate-to-excellent activity against fun-
gal pathogens, especially those now undergoing clinical
trials.

Bacterial peptides

Among the first antifungal peptides isolated were
the iturin and bacillomycin families produced by Bacillus
subtilis [6,7]. Both have cyclic peptidolipid structures
[8,9] and though antifungal, are hemolytic [10]. Strains of
Pseudomonas syringaeproduce the syringomycins, syrin-
gostatins, and the syringotoxins, which have potent anti-
fungal properties. Syringomycins are small lipodepsi-
peptides and are among the most potent bacterial antifun-
gal peptides yet discovered. Syringomycin-E (SE) the
most prevalent form of this peptide. SE was highly lethal
to Aspergillus flavus, Aspergillus fumigatus, Aspergillus
niger, Fusarium moniliforme, and Fusarium oxysporum,
producing an LD95 of 7.8 µg/ml for A. flavusand LD95
values with 1.9 µg/ml for the other fungi [11,12]. A 12%
ointment of SE was effective in controlling vaginal candi-
diasis in a murine model [13]. Though generally conside-
red a phytotoxin, SE is produced by a saprophytic isolate
from wheat [14], thus casting doubt to its phytotoxic repu-
tation and possible harm to mammals. Syringostatin A and
syringotoxin B were lethal to human pathogens such as
Candida albicans (MIC 3.2 µg/ml) andA. fumigatus
(MIC, 5 µg/ml) [15]. Cepacidines are glycopeptides from
Burkholderia cepaciaand are noteworthy in that, when
used together, were more active than amphotericin B and
active against a wide range of fungi including Candida
sp., A. niger, Cryptococcus neoformans, and F. oxyspo-
rum [16,17]. The nikkomycins, non-toxic to mammalian
cells, are a family of potent antifungal peptidyl nucleoside
antifungals produced by Streptomyces tendaewhich inhi-
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bit chitin biosynthesis [18,19]. Nikkomycins X and Z pro-
duced minimum inhibitory concentrations (MICs) of only
0.77 and 0.1 µg/ml, respectively, against Coccidiodes
immitiswith higher MICs of 8 and 30 µg/ml, respectively,
against Blastomyces dermatitidis[20]. They were very
effective in murine models of coccidiomycosis and blas-
tomycosis and well tolerated orally, with moderate effi-
cacy against histoplasmosis [20,21]. Taken orally,
nikkomycins X and Z prevented death in mice infected
with a lethal challenge of C. immitis. However,
Nikkomycin Z was degraded in rat, mouse, and rabbit
plasma much faster than in pH 7.5 buffer [22].

Fungal peptides

As a group, fungal-produced antifungal peptides
are more active than those from bacteria and plants.
Echinocandins are a diverse group of potent antifungal
peptides which affect cell-wall biosynthesis [23, 24]. They
include the echinocandin family (of which echinocandin B
is the most common form) and other natural products
having a modified echinocandin B peptide core such as
the pneumocandins, aculeacins, WF11899, and mulundo-
candins. Several excellent reviews of this group have been
published [25-27]. The native echinocandin family are
cyclic lipopeptides produced by A. nidulans and
Aspergillus rugulosus [28, 29]. Echinocandin B is a potent
antifungal with a MIC of 0.6 µg/ml for C. albicans[28].
Pneumocandins, produced by Zalerion arboicola, were
effective against Pneumocystis cariniiin rats [30,31].
Aspergillus aculeatus produces aculeacin, a lipopeptide
effective against C. albicans(MIC 0.2 µg/ml) but not
against filamentous fungi [32-34]. Mulundocandins, lipo-
peptides produced by Aspergillus syndowi var. mulunden-
sis, are active against A. niger with a MIC of 31.3 µg/ml
[35]. WF11899 A, B, and C are produced by Coleophoma
empetri. While more effective than cilofungin and flucona-
zole in mice against a systemic Candida infection, the
WF11899 family were hemolytic [36,37] 

While native echinocandins and pneumocandins
are potent antifungals, they are hemolytic and have poor
solubility in water. Much research has been performed to
enhance their fungicidal properties while reducing their
negative aspects. A series of echinocandin analogs in
which substitutions at the N-acyl side chain improved
their potency, spectrum of activity, and safety profile have
been developed. LY121019 (cilofungin), the first echino-
candin introduced into clinical trials, had antifungal acti-
vity essentially limited to Candidaspp. [38], but clinical
trials were abandoned due to side affects attributed to its
vehicle [39,40] and development was discontinued. 

A second generation of molecules belonging to the
echinocandin group has now entered clinical trials and
consists of VER-002 (LY303366), FK463, and caspofun-
gin (MK-0991). These molecules have been modified to
permit solubility in aqueous solution and have potent anti-
fungal activity against Candidaspp. and Aspergillusspp.

V-echinocandin (LY303366) is characterized by a
substitution of the cyclic peptide ring. This compound has
potent in vitro activity against experimental disseminated
candidiasis and esophageal candidiasis in profoundly
immunocompromised animals [41-44]. V-echinocandin
also improves survival and reduces organism-mediated
tissue injury in experimental pulmonary aspergillosis [45].
A recently completed clinical trial found V-echinocandin
to be highly effective in treatment of esophageal candidia-
sis in the higher dosage arm [46]. 

FK463 has a distinctive sulfonate substitution on
the peptide ring which enhances its aqueous solublity

[47]. This molecule has potent activity in vivo against
experimental disseminated candidiasis as well as encoura-
ging experimental activity against disseminated aspergi-
llosis [48]. Current clinical trials studying FK463 include
a randomized trial of prophylaxis in stem-cell transplant
recipients, and open label studies of salvage therapy for
invasive aspergillosis and candidiasis. A phase I study for
safety, tolerance, and plasma pharmacokinetics in children
has recently been completed [49] while a phase I clinical
study in healthy adult males determined that FR463 was
well tolerated at single infusion concentrations of 2.5-
25 mg [50]. Phase II clinical trials showed FR463 effecti-
ve in improving or clearing clinical symptoms of
esophageal candidiasis on AIDS patients [51]. 

A-192411.29 is a novel antifungal agent derived
from natural echinocandin [52]. Its potency was compara-
ble to that of amphotericin B and had broad-spectrum fun-
gicidal activity and was active against clinically important
yeasts such as C. albicans, Candida tropicalis and
Candida glabrata [52].

The semisynthetic pneumocandin, L-693,989, is a
phosphate ester of pneumocandin A. It had a 90% mini-
mum effective dose of 0.15 mg/kg of body weight and a
90% minimum effective dose of 3.0 mg/kg in animal
models of P. carinii pneumonia (PCP) and candidiasis,
respectively [53]. L-731,373 and L-733,560 are water-
soluble, semisynthetic daughter compounds of pneumo-
candin Bo. They are significantly more potent than their
parent compound and were relatively non-hemolytic as
compared to amphotericin B [54,55]. They were also
effective against disseminated aspergillosis and candidia-
sis but not cryptococcosis in murine models and delayed
mortality due to pulmonary aspergillosis at the effective
dose of 5 mg/kg in the rat [56,57]. 

A second generation pneumocandin, caspofungin
(MK-0991) is characterized by a long akyl N-acyl substi-
tution and is active in vivo against experimental dissemi-
nated candidiasis and disseminated aspergillosis [58, 59].
Recently completed clinical trials demonstrated excellent
responses in patients with esophageal candidiasis and
encouraging activity in patients with invasive aspergillosis
refractory to, or intolerant of, conventional antifungal the-
rapy [60]. It is currently undergoing clinical investigation
in randomized trials for empirical antifungal properties
and for treatment of candidemia. A phase I study of the
safety, tolerance, and plasma pharmacokinetics of caspo-
fungin for early empirical antifungal therapy in children is
being initiated.

The aureobasidins, produced by Aureobasidium
pullulans, are believed to be lytic by altering actin
assembly and delocalizing chitin in fungal walls, although
another study indicated an effect on sphingolipid synthesis
[61-63]. Aureobasidin A has a broader spectrum of acti-
vity and a greater effectiveness for murine candidiasis
than the echinocandins, fluconazole and amphotericin B
[64,65]. Other families of potent antifungal peptides inclu-
de the leucinostatins and helioferins. Unfortunately, they
were toxic to mammalian cells in vitro, mice, chicken
embryos, or were hemolytic [66,67].

Plant peptides

Though the largest number of antifungal peptides
have been isolated from plants, few have been tested
against human pathogenic fungi, and even fewer were
effective at low concentrations. Zeamatin, a large peptide
of 22KDa produced by Zea mays, is one such peptide,
with a MIC for C. albicansof 0.5 µg/ml [68]. It permiabi-
lizes fungal membranes, causing death. Several plant pep-
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tides were shown by zonal inhibition studies using treated
discs to be active against fungal pathogens. The cyclopep-
tide alkaloids amphibine H, frangufoline, nummularine,
and rugosanine A were active against A. nigerat 5 µg/ml
in such studies [69,70].

Insect and amphibian peptides

Insects and amphibians exist in microorganism-
rich environments, so it is not surprising they produce
potent antimicrobial peptides. Several insect antifungal
peptide families have been discovered, with the cecropins
being the most well known. Cecropin A and B are linear,
lytic peptides produced by the giant silk moth, Hyalopora
cecropia, and are lethal for approximately 95% of F. oxys-
porum and A. fumigatus germinating conidia at 12 and
9.5 µg/ml, respectively [71,72]. Interestingly, both cecro-
pins were active in acidic medium (pH 5-6) but only
cecropin A was fungicidal at neutral pH. This may be due
to a charge difference at the C-terminus (the peptide por-
tion that inserts into the membrane) of these peptides [72].
Recently, an all D-amino acid-containing cecropin B was
found to retain the potent fungicidal properties of the
L-form, but resistant to degradation by papain, trypsin and
pepsin which destroyed the L-form [73]. Drosomycin and
thanatin are cysteine-rich peptides from Drosophila mela-
nogaster and Podisus maculiveris, respectively.
Drosomycin is an inducible peptide, 44 amino acids in
length, with a twisted three-stranded -sheet stabilized by
three disulphide bonds and is very effective against
F. oxysporum isolates [74-76]. Thanatin is smaller than
drosomycin, being only 21-residues in size, and, in water,
adopts a well-defined antiparallel -sheet structure with a
disulfide bridge [77]. It is non-hemolytic with activity
against F. oxysporum and A. fumigatus[78].

Three families of amphibian antifungal peptides
have been isolated. The dermaseptins, produced by the
South American arboreal frog, Phyllomedusa sauvagiiare
lytic, linear, cationic, lysine-rich peptides [79-81].
Dermaseptin was fungicidal for A. flavus, A. fumigatus,
and F. oxysporum, with LD50 values of 3 µM, 0.5 µM,
and 0.8 µM, respectively [72]. Another South American
tree frog, Phyllomedusa bicolor, produces Skin-PYY
(SPYY), an antifungal compound closely related to NPY,
a neuropeptide, and PYY, a gastrointestinal tract peptide.
SPYY permeates phospholipid membranes and inhibited
C. neoformans, C. albicans, and A. fumigatusgrowth with
MIC values of 20 µg/ml, 15 µg/ml, and 80 µg/ml, respecti-
vely [82]. Magainins, the first reported antifungal amphi-
bian peptides, are produced by the African clawed frog,
Xenopus laevis. Their helical, amphiphilic structures have
an affinity for microbial membranes causing dissipation of
ion gradients [83, 84]. Magainin was not hemolytic and
inhibited C. albicansgrowth [83].

Mammalian antifungal peptides

Mammals produce potent, lytic antimicrobial pep-
tides. Excellent reviews [85-90] have been published on
this topic. Antifungal peptides produced by neutrophils
and intestinal Paneth's cells are known as α-defensins
while β-defensins are mainly produced by epithelial cells.
Human neutrophils produce HNP-1 and HNP-2 which
were lethal for C. albicans while they and HNP-3 signifi-
cantly inhibited C. neoformans growth at 50 µg/ml
[91,92]. Rabbit neutrophils produce NP-1, NP-2, and NP-
3a, which were highly effective against C. albicans [93].
NP-1 inhibited the growth of encapsulated C. neoformans
isolates between 3.75 and 15 µg/ml, and prevented the
growth of nonencapsulated isolates at lower concentra-
tions [94]. NP-1,-2, and -3 killed 100% of A. fumigatus
hyphae at 25, 50, and 100 µg/ml, respectively, but were
inactive against the resting conidia of this fungus [95]. 

β-defensins include tracheal antimicrobial peptide
(TAP) and the gallinacins. The cysteine-rich TAP is produ-
ced by bovine respiratory epithelial cells and was active
(MIC of 25 µg/ml) against C. albicans[96]. Chicken leu-
kocytes produced the cationic gallinacins which have three
intramolecular cysteine disulfide bonds and are lysine-and
arginine-rich [97]. Gallinacin-1 and -1α inhibited C. albi-
cansgrowth at 25 µg/ml [97]. β-defensins also include the
porcine leukocyte produced cationic and cysteine-rich pro-
tegrins. Protegrins-1,-2, and -3 inhibited C. albicans
growth at 60, 8, and 3 µg/ml, respectively [98,99].

Bactericidal/permeability-increasing protein (BPI)
is a 55 kDa basic protein present in the azurophilic granu-
les of polymorphonuclear leukocytes. The fungicidal pro-
perties reside in Domain III (amino acids 142-169) of this
protein. A series of analogs (called XMP peptides) based
on the BPI molecule have a broad spectrum of activity,
some with low MIC values against pathogenic fungi
[100]. For example, XMP peptides produced the follo-
wing MIC values for pathogenic fungi: C. neoformans
(0.31-1.25 µg/ml), F. solani (0.31-10 µg/ml), and C. kru-
sei(1.25-5 µg/ml). 

Summary

Nature has developed many defense mechanisms
to protect life against fungal infections. Among them are
the antimicrobial peptides produced by diverse life forms.
Over 100 natural peptides or their analogs have been
found with varying activities against pathogenic fungi
though, to date, only a few have entered clinical trials.
Undoubtedly, many more remain to be discovered and,
because analogs can be more potent than their parents,
future research will certainly find novel antifungal pepti-
des with potential pharmaceutical utility.
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