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Aspergillus flavus is an imperfect filamentous fungus that is an opportunitic patho-
g e n causing invasive and non-invasive aspergillosis in humans, animals, and
insects. It also causes allergic reactions in humans. A. flavus infects agricultural
crops and stored grains and produces the most toxic and potent carcinogic
metabolites such as aflatoxins and other mycotoxins. Breakthroughs in A. flavus
genomics may lead to improvement in human health, food safety, and agricultu-
ral economy. The availability of A. flavus genomic data marks a new era in
research for fungal biology, medical mycology, agricultural ecology, pathogeni-
city, mycotoxin biosynthesis, and evolution. The availability of whole genome
microarrays has equipped scientists with a new powerful tool for studying gene
expression under specific conditions. They can be used to identify genes respon-
sible for mycotoxin biosynthesis and for fungal infection in humans, animals and
plants. A. flavus genomics is expected to advance the development of therapeu-
tic drugs and to provide information for devising strategies in controlling diseases
of humans and other animals. Further, it will provide vital clues for engineering
commercial crops resistant to fungal infection by incorporating antifungal genes
that may prevent aflatoxin contamination of agricultural harvest.
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Genómica de Aspergillus flavus: una puerta a la salud
humana y animal, seguridad alimentaria y resistencia
de las cosechas a las enfermedades

Aspergillus flavus es un hongo filamentoso imperfecto y patógeno oportunista
capaz de causar aspergilosis invasoras y no-invasoras en humanos, animales e
insectos. También causa reacciones alérgicas en humanos. A. flavus infecta
cosechas agrícolas y granos almacenados y produce los metabolitos carcinóge-
nos más tóxicos y potentes, como las aflatoxinas y otras micotoxinas. El conoci-
miento de la genómica de A. flavus puede conducir a mejoras en la salud
humana, seguridad alimentaria y economía agrícola. La disponibilidad de datos
genómicos de A. flavus abre una nueva era en la investigación en biología fúngi-
ca, micología médica, ecología agrícola, patogenia, biosíntesis de micotoxinas y
evolución. La disponibilidad de microarrays (matrices) que incluyen el genoma
completo ha equipado a los científicos con una nueva y poderosa herramienta
para estudiar la expresión génica bajo condiciones específicas. Los microarrays
pueden ser utilizados para identificar genes responsables de la biosíntesis de
micotoxinas y de la infección fúngica en humanos, animales y plantas. Se
espera que la genómica de A. flavus avance en el desarrollo de fármacos tera-
péuticos y proporcione información para idear estrategias para el control de las
enfermedades humanas y de otros animales. Además, proporcionará pistas
clave vitales para diseñar cosechas comerciales resistentes a la infección
fúngica al incorporar genes antifúngicos que pueden prevenir la contaminación
por aflatoxinas de las cosechas agrícolas.
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The genus A s p e r g i l l u s, a member of the phylum
Ascomycota, includes over 185 known species. To date,
around 20 of them have been reported to cause harmful
infections in humans and animals. Perhaps the most in-
famous species in this genus is Aspergillus flavus. Next to
Aspergillus fumigatus , it is the second most common
cause of invasive and non-invasive aspergillosis in
humans and animals [36,38,39]; and in some geographic
areas it is the leading causative agent for aspergillosis.
A. flavus produces many secondary metabolites including
aflatoxins, the most toxic and most potent carcinogenic
natural compounds that cause aflatoxicosis and induce
cancers in mammals. In addition, it is a weak and opportu-
nistic pathogen of many crops (corn, cotton, peanuts, and
treenuts) and contaminates them with aflatoxins. This ubi-
quitous mold not only reduces yield of agricultural crops
but decreases the quality of the harvested grains. Due to
A. flavus infection to the crops and aflatoxin contamina-
tion in grains, hundreds of millions dollars are lost to the
U.S. and world economy annually. 

In nature, A. flavus is one of the most abundant and
widely distributed soil-borne molds and can be found
anywhere on earth. It is a saprophytic fungus that is capable
of surviving on many organic nutrient sources like plant
debris, tree leaves, decaying wood, animal fodder, cotton,
compost piles, dead insect and animal carcasses, outdoor
and indoor air environment (air ventilation system), stored
grains, and even human and animal patients [63]. Its opti -
mal range for growth is at 28 - 37 °C and can grow in a
wide range of temperatures from 12 to 48 °C. The heat
tolerance nature contributes to its pathogenicity on
humans and other warm blooded animals. The fungus
mostly exists in the form of mycelium or asexual conidia
spores. Under adverse conditions such as dry and poor
nutrition, the mycelium congregates to form resistant
structures called sclerotia. The fungus over-winters either
as spores or as sclerotia. The sclerotia germinate
t o f o r m new colonies when growth conditions are
f a v o r a b l e [8,33].

Aspergillus flavus is the second leading cause of
aspergillosis

“Aspergillosis” is an umbrella term used to descri-
be a wide range of diseases caused by a number of the
A s p e r g i l l u s species including A. flavus. These diseases
range from an “allergy”-type illness, allergic bronchopul-
monary aspergillosis, to pulmonary aspergilloma, to life-
threatening generalized infection. After A. fumigatus ,
A. flavus is the second leading cause of invasive and non-
invasive aspergillosis in humans and animals
[2,36,38,39,73,98,99]. Aspergillus niger, Aspergillus cla -
v a t u s, Aspergillus glaucus group, Aspergillus nidulans,
Aspergillus oryzae, Aspergillus terreus, Aspergillus ustus,
and Aspergillus versicolor are among the other species
less commonly isolated pathogens in humans and animals.
Due to the increase of immunocompromised patients in
the population because of the increased use of immuno-
suppressive therapies (e.g. organ transplant and cancer
patients), the incidence of aspergillosis caused by
Aspergilli is rising. In most cases, A. flavus causes severe
illness only in immunocompromised individuals; how-
ever, healthy people also may become infected. Allergic
bronchopulmonary aspergillosis is a hypersensitivity
disorder. It typically occurs in patients suffering from
asthma or cystic fibrosis. Allergic fungal sinusitis is an-
other allergic illness. The pathogen can attack any part of

the body, from the skin to the sinuses to the lungs to the
kidneys to the heart. There is no effective antifungal drug
available on the market to control fungal growth in human
patients and so invasive aspergillosis is often fatal. There
is a desperate need for better therapeutic drugs to treat
ever increasing patients with aspergillosis. 

In certain geographical locations like Saudi Arabia
and Sudan, with semi-arid and arid dry weather condi-
tions, invasive aspergillosis caused by A. flavus is more
common than that caused by A. fumigatus [57,60,97,106].
A. flavus accounted for 44% cutaneous aspergillosis and
A s p e r g i l l u s sinusitis, while A. fumigatus accounts for
26%. Among aspergillosis keratitis cases, A. flavus
accounted for 80% of the total Aspergillus infections [60].
In most other geographical locations A. fumigatus is the
commonest causative agent. The high prevalence of
Aspergillus spp. may be due to the fact that A. flavus spo-
res can survive the hot and dry weather of Sudan and
Saudi Arabia. A. flavus was also reported to infect human
heart leading to endocarditis [59,88] or pericarditis [50],
human eyes causing acute renal colic [83], and in the
ear [16] as well as insects [65].

Aspergillus flavus is a weak opportunistic pathogen
of many agricultural crops

A. flavus causes diseases of many agricultural
crops such as maize (corn), cotton, groundnuts (peanuts),
as well as tree nuts such as Brazil nuts, pecans, pistachio
nuts, and walnuts. Its ability to attack seeds of both mono-
cots and dicots, and to infect seeds produced both above
and below the ground, demonstrates that this fungus has
evolved a battery of mechanisms to breach the resistance
of host. Few plant pathogenic fungi have such a broad
host range. Compared with A. fumigatus and A. nidulans,
A. flavus lacks host specificity [95]. It infects corn ears,
cotton balls and peanut pods after insect or mechanical
damages occur [54]. Under weather conditions favorable
for its growth, A. flavus can cause a significant ear rot on
maize. Because of its ability to grow at low water activity,
A. flavus is also capable of colonizing seeds of grains and
oil crops. In general, high ambient temperature and plant
stress are the two environmental parameters most closely
correlated with A. flavus infections in plants [79].

Aspergillus flavus is the predominant species that
produces aflatoxins

Aflatoxins are a group of structurally related toxic
secondary metabolites produced mainly by certain strains
of A. flavus and A. parasiticus . The aflatoxins, B1, B 2, G 1

and G2 (AFB1, AFB 2, AFG1 and AFG2) are the major four
toxins among at least 16 structurally related toxins [51].
A. flavus produces aflatoxins B1 and B2. Other toxic com-
pounds produced by A. flavus are cyclopiazonic acid,
kojic acid, ß-nitropropionic acid, aspertoxin, aflatrem and
aspergillic acid. A. parasiticus produces aflatoxin G1 and
G2, in addition to B1 and B2, but not cyclopiazonic acid
[11,107,118]. Aflatoxin B1 is predominant, the most toxic
and most potent hepatocarcinogenic natural compound
ever characterized [94]. Aflatoxin M1 is a major metabolic
product of aflatoxin B1 in animals and is usually excreted
in the milk and urine of dairy cattle and other mammalian
species that have consumed aflatoxin-contaminated food
or feed. 
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Figure. Clustered genes (left) and the aflatoxin biosynthetic pathway (right). The generally accepted pathway for aflatoxin biosynthesis is presented. The cluste-
red genes with their new and old names are shown on the left. The vertical line represents the 82 kb aflatoxin biosynthetic pathway gene cluster plus sugar utili-
zation gene cluster in A. parasiticus and A. flavus. The new gene names are given on the left of the vertical line and the old gene names are given on the right.
Arrows along the vertical line indicate the direction of gene transcription. The ruler on the far left indicates the relative sizes of these genes in kilobase pairs.
Arrows indicate the connections from the genes to the enzymes they encode, from the enzymes to the bioconversion steps they are involved in, and from the
intermediates to the products in the aflatoxin bioconversion steps. Abbreviations: NOR, norsolorinic acid; AVN, averantin; HAVN, 5’-hydroxy-averantin; OAVN,
oxoaverantin; AVNN, averufanin; AVF, averufin; VHA, versiconal hemiacetal acetate; VAL, versiconal; VERB, versicolorin B; VERA, versicolorin A; DMST,
demethylsterigmatocystin; DHDMST, dihydrodemethylsterigmatocystin; ST, sterigmatocystin; DHST, dihydrosterigmatocystin; OMST, O-methylsterigmatocys-
tin; DHOMST, dihydro-O-methylsterigmatocystin; AFB1, aflatoxin B1; AFB2, aflatoxin B2; AFG1, aflatoxin G1; and AFG2, aflatoxin G2.
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Aflatoxins are polyketide-derived secondary meta-
bolites. Their structures are composed of bis-furan-contai-
ning dihydrofuranofuran and tetrahydrofuran moieties
(rings) fused with a substituted coumarin. The aflatoxin
pathway (Figure) represents one of the best-studied path-
ways of fungal secondary metabolism [29,46,72,80,
112,115]. Aflatoxin biosynthesis has been proposed to
involve at least 23 enzymatic reactions. As many as 15
structurally-defined aflatoxin intermediates have been
identified in the aflatoxin biosynthetic pathway. Genetic
studies on aflatoxin biosynthesis in A. flavus and A. para -
siticus led to the cloning of 29 genes responsible for enzy-
matic conversions in the aflatoxin pathway (Figure),
which are clustered within a 75kb DNA region
[109,114,115]. Many of the aflatoxin pathway genes and
their corresponding enzymes have been characterized in
A. flavus and A. parasiticus [ 5 , 2 1 , 2 4 , 3 1 , 4 3 , 8 0 , 1 0 3 , 1 0 4 ,
108,110,111,115]. The early aflatoxin biosynthesis path-
way (from acetate to versicolorin B (VERB) or versicolo-
rin A (VERA) includes formation of those intermediates
that are colored pigments (brick red, yellow, or orange in
color). The later aflatoxin pathway intermediates (from
VERB or VERA to the four aflatoxins) includes those that
are toxins which are colorless under normal light and fluo-
renscent under UV light, In the aflatoxin biosynthetic
pathway, norsolorinic acid (NOR) is the first stable afla-
toxin intermediate in the pathway [5,9]. VERB is a critical
branch point leading either to AFB1 and AFG1 or to AFB2

and AFG2 formation. The two cytochrome P450 mono-
oxygenases encoded by a f l Q (o r d A) [86,111] and a f l U
(cypA) [43] are the two key enzymes [105] for the forma-
tion of aflatoxin G1 ( A F G1) and aflatoxin G2 ( A F G2) in
A. parasiticus and A. flavus.

There is a positive regulatory gene, a f l R [ 2 3 , 8 1 ] ,
which is required for transcriptional activation of most, if
not all, of the structural genes [25-27,44] by binding to the
palindromic sequence 5’-TCGN5CGA-3’ in the promoter
region of the structural genes in A parasiticus, A. fla -
vus [42,45] and in A. nidulans [119]. Adjacent to the aflR
gene, a gene, aflS (aflJ), is also involved in the regulation
of transcription [21,71]. Finally, the laeA gene, for loss of
af l R expression, was shown to be involved in the global
regulation of secondary metabolites, aflatoxins, sterigma-
tocystin (ST), penicillin and gliotoxin, in several fungal
species [13,17].

Aspergillus flavus is the leading cause of aflatoxicosis

The identification of aflatoxin as a food poison ori-
ginated from the incidence of a mysterious “Turkey-X”
disease in 1960 when approximately 100,000 turkey
poults in England died [1,66]. The culprit was later identi-
fied as aflatoxin produced by A. flavus in peanut-meal
feed. Aflatoxin was named after Aspergillus flavus toxin.
Aflatoxins produced by A. flavus have both hepatotoxic
and carcinogenic actions, depending on the level and
duration of exposure. The ingestion of aflatoxins in conta-
minated food or feed causes a disease called aflatoxicosis.
Acute aflatoxicosis is produced when moderate to high
levels of aflatoxins are consumed. Symptoms include
acute liver damage, acute necrosis, cirrhosis, or in severe
cases, acute liver failure and death [48,67]. Aflatoxins in
liver irreversibly bind to protein and DNA to form adducts
such as aflatoxin B1-lysine in albumin [93]. Disruption of
the proteins and DNA bases in hepatocytes causes liver
toxicity [3,96]. In humans, patients experience high fever,
rapid progressive jaundice, edema of the limbs, pain,
vomiting, alteration in digestion, absorption and/or meta-
bolism of nutrients and swollen livers.

Outbreaks of acute aflatoxicosis from contamina-
ted food in humans have been documented in Kenya,
India [74], Malaysia, and Thailand [19,68]. One of the
first major documented reports of aflatoxicosis in humans
occurred in western India in 1974 where 397 persons
w e r e affected and 108 persons died. More than 150
villages were involved [64]. As recently as July 2004, an
incident of aflatoxin poisoning in Kenya had occurred
involving 317 cases and 125 deaths due to consumption of
aflatoxin contaminated maize (corn), the largest and most
severe outbreaks of acute aflatoxicosis documented
worldwide [20,67]. 

Chronic dietary exposure to aflatoxins is a major
risk of hepatocellular carcinoma, particularly in areas
where hepatitis B virus infection is endemic [14,48,
55,102]. Incidences of liver carcinomas were reported in
Kenya, Senegal, China, Swaziland [82], Mozambique [14]
and Mexico. Aflatoxin B1 is a very potent carcinogen in
humans and animals including nonhuman primates, birds,
fish, and rodents. Liver is the primary target organ of
acute and chronic injury. Aflatoxin B1 is modified into a
more toxic and carcinogenic by-product during detoxifica-
tion by a cytochrome P450 monooxygenase in liver. The
epoxide form of aflatoxin binds to guanine residues in
DNA, forms guanyl-N7 adducts, and induces mutations.
One mutation, a G to T transversion [4,14] in codon 249
of the p53 tumor suppressor gene is generally believed to
be the mechanism for initiating formation of hepato-
carcinomas [35,55,78]. Aflatoxin B 1 is also a potential
immunosuppressive agent [87]. Continuous low level
exposure of aflatoxin to growing vertebrates may enhance
their susceptibility to infection and tumorigenesis [87].

In the developed countries, aflatoxin contamination
to agricultural crops is monitored and aflatoxin levels are
strictly regulated. A guideline of 20 parts aflatoxin per
billion parts of food or feed substrate (ppb) is the maxi-
mum allowable limit imposed by the U.S. Food and Drug
Administration for interstate shipment. European coun-
tries have established more stringent guidelines to a much
lower level (3-5 ppb). Crops are destroyed or deconta-
minated if the content exceeds the official regulatory
levels, resulting yearly in billion dollar losses worldwide.
In developing countries where detection and monitoring
are non-existent and there are regular food shortages, food
safety is the major issue.

In summary, aflatoxin contamination of agricultu-
ral commodities poses a potential risk to livestock and
human health [6,7,10,12,30,34,41,53,56,66,89]. It is
not only a serious food safety concern, but has significant
economic implications for the agriculture industry world-
wide.

Genomics of Aspergillus flavus

Genomics is the process of revealing the entire
genetic contents of an organism, by high throughput
sequencing of the DNA and bioinformatics identification
of all of the genes. Recent technological breakthroughs
allow scientists to study an organism at the genome scale
in a very short time frame. The A. flavus whole genome
sequencing project funded by a USDA/NRI grant awarded
to Professor Gary A. Payne and internal funding from the
Food and Feed Safety Research Unit, Southern Regional
Research Center, USDA/ARS, has been completed at The
Institute for Genomic Research (TIGR) under the supervi-
sion of Dr. William C. Nierman. The sequence data have
been deposited to NCBI GenBank database
(http://www.ncbi.nlm.nih.gov) and are also available
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throught the Aspergillus flavus website (http://www.asper-
gillusflavus.org). The A. flavus EST data [116] were relea-
sed earlier at the websites of NCBI and TIGR
(http://www.tigr.org/tdb/tgi). Primary assembly indicated
that the A. flavus genome consists of eight chromosomes.
The genome size is about 36.3 Mega base pairs (Mb). The
A. flavus genome contains 13,071 predicted genes
(http://www.aspergillusflavus.org/genomics). The geno-
mes of several related A s p e r g i l l u s species, A. fumiga -
t u s [76], Neosartorya ficheri (anamorph A. fisheri) ,
A . o r y z a e [69], A. nidulans [49], A. niger [Baker and
Lasure, personal communication], A. terreus , and
A . c l a v a t u s, have also been sequenced or are being
sequenced [117]. The availability of the genome sequence
data will facilitate research on basic biology, infection
mechanism, host-fungus interaction, mycotoxin synthesis,
genetic regulation, and evolution of these Aspergillus spe-
cies through comparative genomic studies of these closely
related A s p e r g i l l u s species. In future studies, gene profi-
ling using microarrays will provide a powerful tool to
detect and profile whole sets of genes transcribed under
specific conditions, to study their biological functions, and
to identify pathogenicity factors involved in A. flavus
infection in humans, animals, and plants [62,76,77,84,85].
A. flavus amplicon microarrays, funded by the Food and
Feed Safety Research Unit of USDA/ARS, Southern
Regional Research Center in New Orleans, are under
construction at TIGR based on A. flavus EST and genome
sequence data [116]. The A. flavus whole genome
Affymetrix oligo microarrays, funded by a USDA/NRI
grant awarded to a consortium led by Professor Gary
Payne, North Carolina State University in Raleigh, are
under construction. These A. flavus genomic resources
provide a platform for functional genomic studies of this
important fungus and promise a bright future for the dis-
covery of new antifungal drugs, for the breeding of crops
resistant against fungal invasion, for the development of
innovative strategies to prevent and cure diseases of
humans, animals and plants; and for the elimination of
mycotoxins in the food chain.

Aspergillus flavus genomics for identifying pathogeni-
city factors involved in human and animal infection
and for the development of antifungal drugs

The most important genes that may contribute to
A. flavus pathogenicity in human and animal infection are
expressed at mammalian and avian body temperature.
Analysis of the A. flavus genome data and functional
genomic studies using microarray under a series of tempe-
rature conditions will help to screen out the critical genes
responsible for thermotolerance [76]. Comparative geno-
mic analysis of A. flavus versus A. fumigatus under those
temperature conditions could help to identify the genes
common in both A s p e r g i l l i in response to temperature
changes. The potential candidate genes include those
encoding for heat shock proteins (HSP) and thermostable
enzymes.

The fungal cell wall is vital for cell viability and
pathogenicity. Beyond serving as a protective layer, the
fungal cell wall is a critical site for exchange and filtration
of ions and proteins. The ability of fungal hyphae to pene-
trate the host’s cells is an important feature in infection.
Mammalian cells do not have a cell wall, so it is an ideal
target for antifungal medication. A. flavus cell walls
mainly consist of glycoproteins, β-(1,3)-glucan, β- ( 1 , 6 ) -

glucans, galactomannan, and chitin. These cell wall com-
ponents are cross-linked with proteins being incorporated
into the growing wall. Comparative analysis of the
A . f l a v u s genome could help identify the homologous
genes encoding for enzymes used in the synthesis of cell
wall building blocks, cross-linking enzymes in cell wall
assembly, and signaling networks controlling cell wall
growth. The identification and functional analysis of these
genes would provide insights for antifungal drug develop-
ment, for example, glucan synthesis inhibitors [37]. The
cross-linking enzymes are particularly attractive targets
for antifungal drugs because they function outside the
plasma membrane, making them easily accessible.
Alterations in the cell wall composition of mycelia, espe-
cially 1,3-α-glucan and protein complexes in the outer-
most wall layer, could improve the antifungal drug
efficiency [90].

Aspergillus flavus genomics for identifying virulent
factors in fungal invasion of crops and for studying the
mechanism of crop-fungus interaction

Invasion of preharvest host plants, corn, cotton,
peanut and tree nuts in the field by A. flavus, is a compli-
cated process involving multiple genetic and biological
factors [15,32,40,92]. A few pathogenicity factors have
been reported in A. flavus . The pectinase P2c, implicated
in aggressive colonization of cotton bolls, is produced by
most A. flavus isolates [15,91,95]. Proteases and protease
isozymes have been implicated in colonization of animal
hosts. Invasion of cottonseeds has been associated with
the production of a specific pectinase isozyme [15,32,
91,100]. Lipases have also been described in A. flavus
[113], but their role in pathogenicity is not well establis-
hed. Hydrolytic activity of A. flavus plays an important
role in absorbing nutrients from host plants for fungal
growth. Hydrolytic enzymes such as cellulases, glucana-
ses, chitinases, amylases, pectinases, could be pathogeni-
city factors during fungal invasion of crops. The genes
responsible for such biological processes are very difficult
to identify through conventional molecular cloning
methods. However, some of the genes encoding for
hydrolytic enzymes including amylase, cellulase, pectina-
ses, proteases, chitinase, chitosanases, pectin methyleste-
rases, endoglucanase C precursor, glucoamylase S1/S2
precursors, β-1,3-glucanase precursor, 1,4-β- D - g l u c a n
cellobiohydrolase A precursor, glycogen debranching
enzyme and xyloglucan-specific endo-β- 1 , 4 - g l u c a n a s e
precursor, have been identified from the A. flavus
EST [116] and genome sequence databases. 

There is limited information known about crop-
fungus interaction. Several compounds have been isolated
that are inhibitory to fungal growth, including a chitinase,
amylase and trypsin inhibitors [15,28,32,47], and ribo-
some inactivating proteins [75]. Fatty acid peroxides,
known as oxylipins, affected aflatoxin formation [101].
With the availability of A. flavus whole genome microa-
rray, it is much easier to identify genes expressed during
fungal invasion of crops. Genes involved in such process
could be targeted for inhibiting fungal growth and/or afla-
toxin formation. Knowledge on crop-fungus interaction
could help plant breeders to develop resistant commercial
crops against fungal infection [32,52].
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Aspergillus flavus genomics for deciphering
the mechanism of mycotoxin formation

Studies on aflatoxin biosynthesis in A. flavus a n d
A. parasiticus using classical gene cloning approaches led
to the identification of 29 clustered genes within a 75kb
DNA region on the chromosome. However, it has been
identified only the pathway genes within the gene cluster
and did not account for all of the bioconversion steps of
the aflatoxin pathway [114,115] indicating that some of
the genes responsible for the biosynthesis of aflatoxins
reside outside of the gene cluster (Figure). These genes
encode polyketide synthases (PKS), fatty acid synthases
(FAS), carboxylases, dehydrogenases, reductases, oxida-
ses, oxidoreductases, epoxide hydrolases, mono- or di-
oxygenases, cytochrome P450 monooxygenases,
methyltransferases [24,58,72,115], and non-ribosomal
peptide synthases (NRPS), might be involved in biosyn-
thesis of many other secondary metabolites in A. flavus.
Within the aflatoxin biosynthetic pathway gene cluster
there is a single gene encoding the PKS and at least five
genes encoding cytochrome P450 monooxygenases
(Figure). No other PKS is known to be involved in aflato-
xin biosynthesis. Annotation of the A. flavus EST and
whole genome sequencing data, numerous genes were
found to fall in the categories encoding for these enzy-
m e s [116]. In the A. flavus genome, there exist over
t w o dozen PKSs, two dozens of non-ribosomal peptide
synthases (NRPS) and more than one hundred cytochrome
P450 monooxygenases. Other categories of genes poten-
tially involved in aflatoxin production are genes for global
regulation, signal transduction, pathogenicity, virulence,
oxidative stress [61,70], and fungal development [18,22].
The genes for mitogen-activated protein kinase (MAPK),
MAPK kinase (MAPKK) and MAPKK kinase
(MAPKKK) in stress responses [61] could be good candi-
dates involved in global regulation. A homolog of the
regulatory gene, l a e A [13], was also found in A. flavus
EST [116, EST ID: NAGEM53TV]. With the knowledge
of all genes necessary for aflatoxin formation, we can
design a microarray based-rapid detection system for
monitoring toxin-producing and non-producing strains in
the environment. This detection system also has potential
application in bio-defense and is under development by
USDA/ARS in collaboration with TIGR.

Genes for many other important mycotoxins pro-
duced by A. flavus, such as cyclopiazonic acid (CPA),
aflatrem, and aspergillic acid, have not yet been identified
and their biological functions have not been clear. The
aflatrem biosynthetic pathway genes have been cloned
[120] with the help of A. flavus EST data. Primary analy-
sis of the A. flavus genome reveals an abundance of novel
secondary metabolic gene clusters and some of these
cluster genes may possibly be involved in the biosynthesis
of these mycotoxins. A. flavus genomics will contribute to
a better understanding of the biosynthetic mechanisms of
mycotoxins other than aflatoxins. In addition, these
studies will contribute to the development of new control
strategies to eliminate mycotoxin contamination resulting
in a safer, economically viable food and feed supply. 

The name of A. flavus is almost always linked to its
detrimental effects. However, some beneficial features of
A. flavus could be exploided once we have the genome
data available and their biological functions understood.
A. flavus is genetically almost identifical to A. oryzae, a
widely used industrial and food fungus. However,
A. flavus is regularly isolated from natural habitats while
A. oryzae is a “domesticated” fungus. In nature, A. flavus
grows robustly on decaying vegetation, insect carcasses
and other organic substrates. It is a wonderful recycler in
the biosphere. With information from the genome, genetic
engineering could be used to remove the bad genes for
mycotoxin formation or to add good genes to enhance the
ability of A. flavus to degrade plant fibers and insect shells
(e.g. by improving the expression of chitinase genes). It is
important to realize that through industrial fermentation,
A. flavus may be useful in carbon and nitrogen source
recycling, waste treatment, energy regeneration and other
applications.
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