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Application of classification-tree
models to characterize the mycobiota
of grapes on the basis of origin
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Classification-tree (CT) models are a simple and robust exploratory data analysis
technique that can be used in classification, regressions and summaries of data.
They distill complex ecological relationships into simplified rules and identify the

species necessary for sample classification on the basis of detailed ecological
inventories. The usefulness of this technique to characterize and represent
differences in the grape mycobiota of distinct origins was evaluated.

Grapes from four Portuguese winemaking regions were selected for a 3-year
study: Alentejo, Douro, Ribatejo and Vinhos Verdes. The mycobiota of grapes
was assessed with plating methods and the frequencies of isolations of the
fungal taxa identified in 32 samples were used as a training dataset.

The CT algorithm selected the fungal taxa and respective frequencies to classify
grapes according to its region of origin. The ten-fold cross-validation technique
was used for model evaluation. The success rate of the model was quantified
and expressed in the number of correctly classified samples overall and into
region. Furthermore, model refinement was performed using attribute selection
algorithms and class redefinition. A simple tree model was generated that
classified grapes into three regional origins: Douro, South (Alentejo and Ribatejo
classes together) and Vinhos Verdes, on the basis of the incidence of
Aspergillus niger aggregate and Penicillium thomii in samples with an accuracy
of 82%. The merits and demerits of these models are discussed.
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The mycobiota of grapes have been extensibly stu-
died recently as fungi are responsible for several mycoto-
xin hazards in wine, especially ochratoxin A (OTA). The
results of the work of several authors suggest that differen-
ces exist in the frequency and fungal species to which grapes
are exposed in distinct winemaking regions [1-3,12-15].
Nevertheless, comparative studies have not been perfor-
med to study the variation in the mycobiota of grapes with
the region of origin, independent of other factors such as
annual variation. To characterize the differences of the
mycobiota of grapes originating from distinct geographical
origins, a 3-year study was conducted in 4 Portuguese
winemaking regions. The mycobiota of 32 grape samples
was assessed at harvest time, and the data were analysed
with classification-tree (CT) models [4].
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Classification-tree (CT) models are a multivariate
exploratory analysis technique used in classification,
regression and summarization of data, for descriptive and
predictive purposes. CTs are used to classify objects on the
basis of one or more predictor variables. The tree consists
of a set of decision rules, applied in a sequential manner,
until each object has been assigned to a specific class. The
first decision rule, applied at the ‘root node’ of the tree to
the values of all objects along one or more predictor varia-
bles, has two possible outcomes: objects are either sent to
a terminal node (leaf), which assigns a class, or to an inter-
mediate node, which applies another decision rule. Ulti-
mately, all objects are sent to a terminal node and assigned
a class. In the simplest type of CT, the splits are binary
(each parent node is attached to two daughter nodes) and
the decision rules are univariate (based on a single varia-
ble). CTs can be based on continuous or discrete predictor
variables, or a mixture of both (when univariate splits are
used), and the trees are generally constructed by recursive
partitioning (i.e. a given predictor variable can be used in
more than one decision rule).

CT analysis offers some advantages over traditional
statistic classification methods such as i) ability to handle
data measured on different scales; ii) lack of any assump-
tions concerning the frequency distributions of the data in
each of the classes; and iii) ability to handle non-linear
relationships between features and classes. CTs are flexi-
ble data-driven tools and allow the development of a
model the form of which is directly a function of a parti-
cular data set. They can be used for feature selection/
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reduction and classification purposes. Unlike classification
methods based on neural networks, CTs are a white box
model, meaning the analyst can interpret a decision tree.
The decision process is fully transparent, and its success is
quantified by statistics associated with the models. As a
result, they are excellent tools to describe and summarize
data.

The models can be evaluated in relation to a test set
or to an evaluation methodology such as cross-validation
or bootstrapping, to interpret what has been observed and
to generalise for future observations [16]. This perfor-
mance evaluation can be useful to model refinement,
which can be performed by attribute selection, to describe
better the data and improve model accuracy in identifying
unseen samples. This is of utmost importance in detecting
problems such as overfitting, which happens when the
model tries to “particularize” in an attempt to better des-
cribe the data rather than generalizing. The evaluation
techniques are helpful to model refinement.

CTs are not new to ecological studies [9]. They
have been used to synthesise ecological information ga-
thered on different habitats without sacrificing ecological
specificity [5]. They distill complex ecological relations-
hips into highly simplified rules bases and identify only
those indicator species necessary for habitat classification
from detailed ecological inventories. Nevertheless, they
are not commonly used in fungal ecology studies [7].

In this work, the purpose was to characterize the
main differences in the fungal species of grapes according
to their region of origin using CT models.

Materials and methods
Grape samples

Sampling. Grape samples were composed of 10 gra-
pe bunches collected according to two diagonal transects
in the vineyard. Eleven Portuguese vineyards located
in four winemaking regions were selected for the study:
Douro (three vineyards), Vinhos Verdes (three vineyards),
Alentejo (two vineyards) and Ribatejo (three vineyards).
Portugal mainland is well described and is located between
the parallels 36° 57° 39” W and 42° 9° 8 W (latitude
North) and the meridians 6° 11’ 10 W and 9° 22’ 5 W
(longitude West). Douro and Vinhos Verdes region are
located in north Portugal, at latitudes 41° and 41° to 42° N,
and longitudes 7° and 8°, respectively. Alentejo and Riba-
tejo are located in south Portugal, at latitudes 38° and 39° N,
and longitudes 7 and 8°, respectively. The climate is Sub
Mediterranean in Vinhos Verdes, and Mediterranean in the
other regions mentioned, according to the Rivas-Martinez
criteria [11]. The samples were collected in the vineyard
between late August and September in the harvest seasons
of 2001, 2002 and 2003, near to the harvest date decided
by the producers. Grapes were from distinct grape varie-
ties used for commercial winemaking, and the producers
took all decisions regarding grape production. A total of 32
grape samples were collected in Alentejo (6), Douro (9),
Ribatejo (9) and Vinhos Verdes (8).

Mycological analysis of grapes. The mycoflora of
grapes were determined as described previously [14]: a
total of 50 berries (five berries per bunch) of each sample
were plated in Dichloran Rose Bengal Chloramphenicol
medium (DRBC) (Oxoid, UK) and incubated at 25 °C in
the dark for one week. Aspergillus and Penicillium were
isolated and identified morphologically to species level.
However, Aspergillus niger was referred to as A. niger
aggregate because of the complexity of that taxon.

Classification modeling

Training dataset. The 32 samples were used with
62 predictive attributes. The attributes were all fungal taxa
identified from samples (20 genera, 15 Aspergillus and 27
Penicillium species) and the class attribute was the region
of origin. The number of colonized berries by each species
in the sample was used as abundance, which varied from
0 to 50 (corresponding to 0% and 100% of colonization,
respectively).

Classification algorithm. The training set was ana-
lysed using the J4.8 algorithm, which is a Java implemen-
tation [16] of the well-known C4.5 learning scheme [10].
The notion of entropy, introduced by Claude Shannon in
Information Theory, was used to measure the informative
value of the predictive attributes.

Output model. The output was a tree model, follo-
wed by several statistic measures and the “confusion”
matrix. In the leaves of the model, the numbers in parent-
heses are (i) how many instances from the training set
were classified by the node in that region, and (ii) the
number of instances that were incorrectly classification by
the node (if any, if just one figure is presented, then only
correctly classified instances are presented). A confusion
matrix contains information about actual and predicted
classifications undertaken by the classifier. It is a square
matrix that shows the various classifications and misclas-
sifications of the model in a compact area. Each row in the
confusion matrix represents an observed class, each
column represents a predicted class, and each cell provides
the number of samples in the intersection of those two
classes.

Evaluation methodology. The obtained classifica-
tion-tree models were then evaluated using the 10-fold
cross-validation approach [8]. The dataset was divided into
10 subsets, ensuring that each class is represented with
approximately equal proportions in all subsets. Then, each
subset is used for testing and the remaining nine for trai-
ning purposes. The error estimates are averaged to yield an
overall estimate.

Attribute selection. In model refinement, WEKA
CfsSubsetEval attribute selection algorithms were used
and the methods selected were BestFirst and RankSearch.

Software. All classification modeling was per-
formed using the Waikato Environment for Know-
ledge Analysis (WEKA) tool developed within the scope
of the Waikato University Machine Learning project
(http://www.cs.waikato.ac.nz/~ml/index.html). Weka is a
comprehensive suite of state-of-the-art machine learning
and data mining algorithms [6]. It is open-source platform-
independent software that provides a user interface com-
ponent to non-programmers.

Results

CT model based on the full mycobiota data of sam-
ples. The tree model obtained using all fungal taxa as
predictive attributes (Figure 1) was able to correctly iden-
tified 29 out of the 32 grape samples (91%) with the full
training dataset. Four fungal taxa were selected to classify
grape origin: A. niger aggregate, Botrytis sp., Penicillium
corylophilum and Penicillium thomii. Botrytis sp. being
used twice with distinct criteria of abundance. There is one
leaf to Douro and Vinhos Verdes classes and two leaves
for Alentejo and Ribatejo classes. The performance of the
model in the given classes is provided in table 1. The
interpretation of the classification model in the classes
mentioned is as follows: seven samples of berries from the
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Figure 1. Classification tree output for describing region classes based on
all attributes.

Table 1. Confusion matrix of the samples classified by the classification-
tree model presented in figure 1.

Region Alentejo  Douro Ribatejo Vinhos Verdes

Full training set

Alentejo 6 0 0 0
Douro 1 7 1 0
Ribatejo 1 0 8 0
Vinhos Verdes 0 0 0 8
10-fold cross-validation
Alentejo 2 0 3 1
Douro 0 6 1 2
Ribatejo 2 0 5 2
Vinhos Verdes 0 2 1 5

Each row in the confusion matrix represents the region of origin, each column
represents a predicted region, and each cell counts the number of samples in the
intersection of those two classes (the correctly identified samples are in bold).

Douro region were characterized by having more than 8%
colonization with A. niger and more than 4% with P. tho-
mii; all eight grape samples from the Vinhos Verdes region
had less than 8% colonization of A. niger and more than
14% of Botrytis sp. colonization; six grape samples from
Alentejo had more than 8% colonization of A. niger and
less than 4% of P. thomii; two samples had the presence of
P. corylophilum, one being from Alentejo; six samples had
no P. corylophilum and less than 26% Botrytis sp. coloni-
zation, five being from Alentejo, while seven Ribatejo
samples had more than 26% Botrytis sp. colonization. The
remaining two grape samples had less than 8% coloniza-
tion of A. niger and less than 14% of Botrytis colonization
in the samples, one of which was from Ribatejo.

Using the evaluation 10-fold cross validation met-
hodology, the CT model correctly identified 18 out of 32
samples (56% success). The number of correctly classified
and missclassified samples in each class are indicated in
table 1. The samples most successfully classified were
those from North Portugal - Douro (67%) and Vinhos Ver-
des (62%).

Model refinement. In an attempt to improve the suc-
cess of the model, it was refined in terms of attribute selec-
tion. The following fungal taxa were selected: A. niger,
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P. expansum, P. thomii and Ulocladium sp. The tree model
(Figure 2) used as predictive attributes, A. niger, P. thomii
and Ulocladium sp. Twenty-eight out of the 32 samples
were correctly identified using the full training data set
(= 88% success).

The model also selected A. niger and P. thomii as
the most predictive attributes. The decision path to classify
Douro samples was the same, but the decision path used to
classify Vinhos Verdes was simplified, as the Botrytis node
disappeared. The tree branch leading to Alentejo and Riba-
tejo samples starts with the split in the incidence of Ulo-
cladium and uses A. niger incidence twice. Three leaves
were generated to classify Alentejo samples and one leaf
to classify Ribatejo samples. The success of this model
with 10-cross fold-validation was higher (69% success).
Douro and Vinhos Verdes samples were correctly classi-
fied with 78% and 88% success, respectively, but the clas-
sification of the South regions Alentejo and Ribatejo was
less successful (Table 2). Fifty % of the Alentejo samples
were incorrectly identified as originating from Ribatejo,
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Figure 2. Classification tree output for describing region classes based on
attribute selection.

Table 2. Confusion matrix of the samples classified by the classification-
tree model presented in figure 2.

Region Alentejo  Douro Ribatejo Vinhos Verdes

Full training set

Alentejo 6 0 0 0
Douro 1 7 0 1
Ribatejo 1 0 7 1
Vinhos Verdes 0 0 0 8
10-fold cross-validation
Alentejo 3 0 3 0
Douro 0 7 1 1
Ribatejo 2 1 5 1
Vinhos Verdes 0 1 0 7

Each row in the confusion matrix represents the region of origin, each column
represents a predicted region, and each cell counts the number of samples in the
intersection of those two classes (the correctly identified samples are in bold).
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Figure 3. Classification tree output for describing three region classes
(Douro, Vinhos Verdes and Sul [=South]) based on attribute selection.

Table 3. Confusion matrix of the samples classified by the classification-
tree model presented in figure 3.

South (Alentejo

Region Douro Vinhos Verdes

and Ribatejo)
Full training set
South 14 0 1
Douro 1 7 1
Vinhos Verdes 0 0 8
10-fold cross-validation
South 13 1 1
Douro 1 7 1
Vinhos Verdes 2 0 6

Each row in the confusion matrix represents the region of origin, each column
represents a predicted region, and each cell counts the number of samples in the
intersection of those two classes (the correctly identified samples are in bold).

while 22% of Ribatejo samples were incorrectly classified
as originating from Alentejo, according to the model crea-
ted with a 10-fold cross-validation. Due to the difficulty of
the models to discriminate between Alentejo and Ribatejo
samples, the two classes were merged and a new model
was created to classify samples from Douro, Vinhos Ver-
des and South regions (Figure 3). Attribute selection was
performed, and two predictive attributes were selected: A.
niger and P. thomii.

The model was simpler than previous ones and
classified 29 out of the 32 (91%) of the samples correctly
in the three sample classes. Three leaves were created, one
for each class. The following decision rules were genera-
ted: “where A. niger colonizes less than 8% of grape sam-
ples 10 observations occurred in the training data set and
eight were from Vinhos Verdes; where A. niger colonizes
more than 8% of the samples and P. thomii colonizes less
than 4%, 15 observations occurred in the training data set
and 14 were from South regions; where A. niger colonizes
more than 8% of the samples and P. thomii colonizes more
than 4%, seven observations occurred in the training data
set and all were from Douro”. Twenty-six out of the 32
samples (82%) were classified successfuly with a 10-fold
cross-validation (Table 3).

Discussion

Classification tree modeling. CT models were able
to classify grapes according to the origin with 91% success
based on the full mycobiota of the samples. From the 62
attributes, the classification algorithm selected four fungal
taxa as split variables with one (Botrytis) being used twice.

The model used as the criterion the incidence of the selec-
ted species in the samples. The interpretability of the
model was good. The samples of the four regions were
characterized according the incidence of the taxa selected.
The differences in the mycobiota between them were sum-
marized and represented according to straight forward
decision rules. Whereas the samples from Douro and
Vinho Verdes were classified by one set of rules each, the
samples from Alentejo and Ribatejo were classified with
two sets of decision rules each, reflecting less homoge-
neity in the samples than those from Douro and Vinho Ver-
des. This was reflected in the lower performance of the
model with the 10-fold cross-validation evaluation techni-
que. The lower performance of the model with evaluation
is an indicator of “over fitting”. This happens when the
classifier generalizes on particular aspects of data, unre-
presentative of the whole class, resulting into good des-
criptive abilities but poor predictive accuracy [16]. This
usually reflects a small sample size in the training dataset.

Prior to attribute selection, a new tree was genera-
ted. The model used A. niger and P. thomii as first splits,
but used a variable not previously selected, Ulocladium, to
discriminate between Alentejo and Ribatejo samples. Attri-
bute selection improved the model accuracy, but the South
samples from Alentejo and Ribatejo were frequently mis-
classified. The differences between the mycobiota of both
regions were subtle, not allowing a clear distinction bet-
ween the dataset and technique used. Nevertheless, the
82% success of the model to classify samples of Vinhos
Verdes, Douro and Southern regions was considered satis-
factory. The final model used the two first split attributes
from previous models, A. niger and P. thomii. The varia-
bles in CT models are selected to create splits that maxi-
mize the resulting node homogeneity; therefore the varia-
bles used in early splits can be considered to be more
important [9].

Variation in the grape mycobiota due to its region
of origin. The results confirmed that the region of origin
influences markedly the mycobiota to which grapes are
exposed. The differences were mainly in the spoilage
fungi, particularly A. niger and P. thomii. Quantitative dif-
ferences were the most evident between grapes of distinct
origins. Vinhos Verdes was easily characterized by the low
incidence of A. niger in the samples, which is consistent
with previous results [14]. This is of importance as
A. niger is a species capable of producing the mycotoxin
OTA that appears to be adapted to Mediterranean climates
where it can be the dominant species of the grape myco-
biota. The Mediterranean regions Douro, Ribatejo and
Alentejo were discriminated by the incidence of P. thomii
but no reason was found for the high incidence of this spe-
cies in Douro samples. Nevertheless P. thomii is not
directly relevant regarding mycotoxin production. With the
training data set available and the data analysis technique
used, it was found that the South samples (Alentejo and
Ribatejo regions) share the same trend in the mycobiota to
which are exposed.

Value of classification trees in comparative fungal
studies. The ability of CTs to summarize and represent dif-
ferences in the diversity of samples, both in qualitative and
quantitative terms is very useful. The descriptive ability of
classification trees is their main advantage for these stu-
dies. This technique facilitates the task of determining dif-
ferences in the distribution of fungal taxa and indicator
species of particular habitats or sites, thereby reducing the
number of variables to be studied as has been shown in
habitat assessment studies [5].

Nevertheless, as CTs are data driven tools, they are
susceptible to over fitting due to small data sets. Another



problem of using small data sets is the instability of the
trees generated due to the effects of small variations on
sample size. In our studies we confirmed this pitfall when
we added new samples from new sites to the unrefined
model (data not shown). Small data sets are a practical and
unavoidable problem in detailed ecological studies.
Nevertheless, over fitting can be detected with evaluation
techniques and reduced with model refinement using attri-
bute selection or model readjustment into new classes.
Therefore, model evaluation by techniques such as 10-fold
cross-validation is essential and can help in the model refi-
nement process to guarantee the quality of the results.
Furthermore this evaluation technique is adequate in small
data sets as it does not require removing samples from the
training data set for modeling.
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